
 

 

 

 

 

APPENDIX E 

 

Report from 

WRAP Regional Modeling Center 

for Air Quality Modeling 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 



E-1 

Overview 

Visibility impairment occurs when fine particulate matter (PM2.5) in the atmosphere scatters and 
absorbs light, thereby creating haze. PM2.5 can be emitted into the atmosphere directly as primary 
particulates, or it can be produced in the atmosphere from photochemical reactions of gas-phase 
precursors and subsequent condensation to form secondary particulates. Examples of primary 
PM2.5 include crustal materials and elemental carbon; examples of secondary PM include ammo-
nium nitrate, ammonium sulfates, and secondary organic aerosols (SOA). Secondary PM2.5 is 
generally smaller than primary PM2.5, and because the ability of PM2.5 to scatter light depends on 
particle size, with light scattering for fine particles being greater than for coarse particles, 
secondary PM2.5 plays an especially important role in visibility impairment. Moreover, the 
smaller secondary PM2.5 can remain suspended in the atmosphere for longer periods and is 
transported long distances, thereby contributing to regional-scale impacts of pollutant emissions 
on visibility.  

The sources of PM2.5 are difficult to quantify because of the complex nature of their formation, 
transport, and removal from the atmosphere. This makes it difficult to simply use emissions data 
to determine which pollutants should be controlled to most effectively improve visibility. 
Photochemical air quality models offer opportunity to better understand the sources of PM2.5 by 
simulating the emissions of pollutants and the formation, transport, and deposition of PM2.5. If an 
air quality model performs well for a historical episode, the model may then be useful for 
identifying the sources of PM2.5 and helping to select the most effective emissions reduction 
strategies for attaining visibility goals. Although several types of air quality modeling systems are 
available, the gridded, three-dimensional, Eulerian models provide the most complete spatial 
representation and the most comprehensive representation of processes affecting PM2.5, 
especially for situations in which multiple pollutant sources interact to form PM2.5. For less 
complex situations in which a few large point sources of emissions are the dominant source of 
PM2.5, trajectory models (such as the California Puff Model [CALPUFF]) may also be useful for 
simulating PM2.5. 

 

Air Quality Models 

 
The WRAP RMC utilized two regulatory air quality modeling systems to conduct all regional 
haze modeling.  A brief discussion of each of these models is provided below. 
 
Community Multi-Scale Air Quality Model  

EPA initially developed the Community Multi-Scale Air Quality (CMAQ) modeling system in 
the late 1990s. The model source code and supporting data can be downloaded from the 
Community Modeling and Analysis System (CMAS) Center (http://www.cmascenter.org/), 
which is funded by EPA to distribute and provide limited support for CMAQ users. CMAQ was 
designed as a “one atmosphere” modeling system to encompass modeling of multiple pollutants 
and issues, including ozone, PM, visibility, and air toxics. This is in contrast to many earlier air 
quality models that focused on single-pollutant issues (e.g., ozone modeling by the Urban 
Airshed Model). CMAQ is an Eulerian model—that is, it is a grid-based model in which the 
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frame of reference is a fixed, three-dimensional (3-D) grid with uniformly sized horizontal grid 
cells and variable vertical layer thicknesses. The number and size of grid cells and the number 
and thicknesses of layers are defined by the user, based in part on the size of the modeling 
domain to be used for each modeling project. The key science processes included in CMAQ are 
emissions, advection and dispersion, photochemical transformation, aerosol thermodynamics and 
phase transfer, aqueous chemistry, and wet and dry deposition of trace species. CMAQ offers a 
variety of choices in the numerical algorithms for treating many of these processes, and it is 
designed so that new algorithms can be included in the model. CMAQ offers a choice of three 
photochemical mechanisms for solving gas-phase chemistry: the Regional Acid Deposition 
Mechanism version 2 (RADM2), a fixed coefficient version of the SAPRC90 mechanism, and 
the Carbon Bond IV mechanism (CB-IV).  

Comprehensive Air Quality Model with Extensions  

The Comprehensive Air Quality Model with extensions (CAMx) model was initially developed 
by ENVIRON in the late 1990s as a nested-grid, gas-phase, Eulerian photochemical grid model. 
ENVIRON later revised CAMx to treat PM, visibility, and air toxics. While there are many 
similarities between the CMAQ and CAMx systems, there are also some significant differences 
in their treatment of advection, dispersion, aerosol formation, and dry and wet deposition. 
 
Model Versions 

Both EPA and ENVIRON periodically update and revise their models as new science or other 
improvements to the models are developed. For CMAQ, EPA typically provides a new release 
about once per year. The initial 2002 MPE for WRAP used CMAQ version 4.4, which was 
released in October 2004. In October 2005 EPA released CMAQ version 4.5, which includes the 
following updates and improvements to the modeling system: 

 
• A new vertical advection algorithm with improved mass conservation 
• Changes in deposition velocities for some PM species 
• A new sea-salt emissions model and inclusion of sea salt in the aerosol thermodynamics 
• An option to make vertical mixing parameters vary as a function of land use type 
 

The RMC completed the initial CMAQ MPE using CMAQ v.4.4. When version 4.5 was released 
in October, the modeling was revised and a comparison of the model performance using the two 
versions was compared.  Note that some of the new features in CMAQ v4.5 (e.g., sea salt in the 
AE4 aerosol dynamics module, and percent urban minimum vertical diffusivity) require the 
reprocessing of the MM5 data using the new version of MCIP (MCIP v3.0). However, because 
such reprocessing could potentially jeopardize the WRAP modeling schedule, WRAP elected to 
operate CMAQ v4.5 using the MM5 data processed using a previous MCIP version, MCIP v2.3, 
and the AE3 aerosol module that does not include active sea salt chemistry. 
 
ENVIRON releases updated versions of CAMx approximately every two years, or as new 
features become available. The version used for the comparison of CMAQ and CAMx was 
CAMx v4.3.  There are many similarities between CMAQ and CAMx regarding the science 
algorithms and chemical mechanisms used, including the CB-IV gas-phase and RADM aqueous-
phase chemistries, ISORROPIA aerosol thermodynamics, and PPM horizontal advection scheme. 
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In the past, the treatment of vertical advection was a major difference between the two models; 
however, the incorporation of the new mass conservation scheme in CMAQ v4.5 makes its 
vertical advection algorithm much more similar to that of CAMx.  
 
Major differences between the two models that still exist are in the basic model code, in the 
treatment of horizontal diffusion SOA formation mechanisms, and in grid nesting (CAMx 
supports one-way and two-way nesting, whereas CMAQ supports just one-way grid nesting). 
Both models include process analysis for the gas-phase portions of the model. The publicly 
released version of CAMx supports ozone and PM source apportionment through its Ozone and 
PM Source Apportionment Technology (OSAT/PSAT) probing tools, while for CMAQ there are 
research versions of the model that include Tagged Species Source Apportionment (TSSA) for 
some PM species (e.g., sulfate and nitrate). There are also research versions of CMAQ and 
CAMx that support the Decoupled Direct Method (DDM) sensitivity tool for PM and ozone.  
 
The CAMx model is computationally more efficient than CMAQ. However, CAMx is currently 
supported for use on only a single central processing unit (CPU) and can perform 
multiprocessing using Open Multi-Processing (OMP) parallelization (i.e., shared memory 
multiprocessors). CMAQ parallelization, on the other hand, is implemented using Message 
Passing Interface (MPI) multiprocessing and therefore can be run using any number of CPUs. 
Depending on the number of model simulations to be performed and the manner in which they 
are set up, there can be a slight advantage either to CAMx or to CMAQ in regard to 
computational efficiency. 

 

Model Simulations 

In support of the WRAP Regional Haze air quality modeling efforts, the RMC developed air 
quality modeling inputs including annual meteorology and emissions inventories for a 2002 
actual emissions base case, a planning case to represent the 2000-04 regional haze baseline 
period using averages for key emissions categories, and a 2018 base case of projected emissions 
determined using factors known at the end of 2005. All emission inventories were developed 
using the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system. Each of these 
inventories has undergone a number of revisions throughout the development process to arrive at 
the final versions used in CMAQ and CAMx air quality modeling.  The development of each of 
these emission scenarios is documented under the emissions inventory sections of the TSS.  In 
addition to various sensitivities scenarios, the WRAP performed air quality model simulations 
for each of the emissions scenarios as follows:  

• The 2002 base case emissions scenario, referred to as “2002 Base Case” or “Base02”.   
The purpose of the Base02 inventory is to represent the actual conditions in calendar year 
2002 with respect to ambient air quality and the associated sources of criteria and 
particulate matter air pollutants.  The Base02 emissions inventories are used to validate 
the air quality model and associated databases and to demonstrate acceptable model 
performance with respect to replicating observed particulate matter air quality.  

• The 2000-04 baseline period planning case emissions scenario is referred to as “Plan02”. 
The purpose of the Plan02 inventory is to represent baseline emission patterns based on 
average, or “typical”, conditions.  This inventory provides a basis for comparison with the 
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future year 2018 projected emissions, as well as to gauge reasonable progress with respect 
to future year visibility.   

• The 2018 future-year base case emissions scenario, referred to as “2018 Base Case” or 
“Base18”.  These emissions are used to represent conditions in future year 2018 with 
respect to sources of criteria and particulate matter air pollutants, taking into 
consideration growth and controls. Modeling results based on this emission inventory are 
used to define the future year ambient air quality and visibility metrics. 

 

Data Sources 

 
The CMAQ model requires inputs of three-dimensional gridded wind, temperature, humidity, 
cloud/precipitation, and boundary layer parameters.   The current version of CMAQ can only 
utilize output fields from the PSU/NCAR MM5 meteorological model.  MM5 is a state-of-the-
science atmosphere model that has proven useful for air quality applications and has been used 
extensively in past local, state, regional, and national modeling efforts.  MM5 has undergone 
extensive peer-review, with all of its components continually undergoing development and 
scrutiny by the modeling community.  In-depth descriptions of MM5 can be found in Dudhia 
(1993) and Grell et al. (1994), and at http://www.mmm.ucar.edu/mm5.  All meteorological data 
used for the WRAP air quality modeling efforts are derived from MM5 model simulations.  The 
development of these data is documented in (Kemball-Cook, S. et al., 2005) 

 

Emission inventories for all WRAP air quality simulations were developed using the Matrix 
Operator Kernel Emissions (SMOKE) modeling system.  The development of these data has 
been discussed and documented elsewhere (Tonnesen, G. et al., 2006) 

Initial conditions (ICs) are specified by the user for the first day of a model simulation. For 
continental-scale modeling using the RPO Unified 36-km domain, the ICs can affect model 
results for as many as 15 days, although the effect typically becomes very small after about 7 
days. A model spin-up period is included in each simulation to eliminate any effects from the 
ICs. For the WRAP modeling, the annual simulation is divided into four quarters, and included a 
15-day spin-up period for the quarters beginning in April, July, and October. For the quarter 
beginning in January 2002, a spin-up period covering December 16-31, 2001, using meteorology 
and emissions data developed for CENRAP were used.. 

Boundary conditions (BCs) specify the concentrations of gas and PM species at the four lateral 
boundaries of the model domain. BCs determine the amounts of gas and PM species that are 
transported into the model domain when winds flow is into the domain. Boundary conditions 
have a much larger effect on model simulations than do ICs. For some areas in the WRAP region 
and for clean conditions, the BCs can be a substantial contributor to visibility impairment.  

For this study BC data generated in an annual simulation of the global-scale GEOS-Chem model 
that was completed by Jacob et al. (http://www-as.harvard.edu/chemistry/trop/geos/) for calendar 
year 2002 were applied. Additional data processing of the GEOS-Chem data was required before 
using them in CMAQ and CAMx. The data first had to be mapped to the boundaries of the 
WRAP domain, and the gas and PM species had to be remapped to a set of species used in the 
CMAQ and CAMx models. This work was completed by Byun and coworkers (http://www-
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as.harvard.edu/chemistry/trop/geos/meetings/2005/ppt/Expanding_Model_Capabilities/GEOS-
CMAQ_april_4_Byun.ppt 

 

The CMAQ model options and configuration used for the WRAP 36-km model simulations are 
described in Tonnesen, G. et al., 2006. 

 

Model Run Specification Sheets 

 

In order to provide documentation for each of the CMAQ and CAMx air quality model 
simulations conducted by the WRAP RMC during Calendar year 2006, a series of Model Run 
Specification Sheets were developed.  These “Spec Sheets” provide a description of each 
simulation, the various air quality model options and configurations used and detailed listing and 
description of the meteorological data and emission inventories for each scenario.  These Spec 
Sheets also provide a means for the RMC to track the development of each of the input data sets 
and defined the modeling schedule.  The purpose of each simulation, and expected results, 
including their implications, are also included.  A link to each of the individual Specification 
Sheets for the model simulations can be found on the RMC web site at:  
http://pah.cert.ucr.edu/aqm/308/cmaq.shtml. 

 

2002 Base Case Modeling 

Base02 Sensitivity Simulations 

The purpose of the 2002 Base Case modeling efforts was to evaluate air quality/visibility 
modeling systems for a historical episode—in this case, for calendar year 2002—to demonstrate 
the suitability of the modeling systems for subsequent planning, sensitivity, and emissions 
control strategy modeling. Model performance evaluation is performed by comparing output 
from model simulations with ambient air quality data for the same time period. After creating 
emissions and meteorology inputs for the two air quality models, CMAQ and CAMx, the next 
step was to perform the visibility modeling and the model performance evaluations, which are 
described below. A detailed discussion of the results of the CMAQ and CAMx model 
simulations can be found in Tonnesen, G. et al., 2006.  Also documented in Tonnesen, G. et al., 
2006 are the results of the model performance evaluation, a model inter-comparison and 
discussion of various sensitivity simulations. This information was used as the basis for 
recommending the selection of CMAQ and/or CAMx to complete the remaining modeling efforts 
in RMC’s support of WRAP.  

Model Performance Evaluation 

The objective of a model performance evaluation (MPE) is to compare model-simulated 
concentrations with observed data to determine whether the model’s performance is sufficiently 
accurate to justify using the model for simulating future conditions. There are a number of 
challenges in completing an annual MPE for regional haze. The model must be compared to 
ambient data from several different monitoring networks for both PM and gaseous species, for an 
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annual time period, and for a large number of sites. The model must be evaluated for both the 
worst visibility conditions and for very clean conditions. Finally, final guidance on how to 
perform an MPE for fine-particulate models is not yet available from EPA. Therefore, the RMC 
experimented with many different approaches for showing model performance results. The plot 
types that were found to be the most useful are the following: 

• Time-series plots comparing the measured and model-predicted species concentrations 

• Scatter plots showing model predictions on the y-axis and ambient data on the x-axis 

• Spatial analysis plots with ambient data overlaid on model predictions 

• Bar plots comparing the mean fractional bias (MFB) or mean fractional error (MFE) 
performance metrics  

• “Bugle plots” showing how model performance varies as a function of the PM species 
concentration 

• Stacked-bar plots of contributions to light extinction for the average of the best-20% 
visibility days or the worst-20% visibility days at each site; the higher the light extinction, 
the lower the visibility 

Examples of each of these MPE metrics and analysis products can be found in Tonnesen, G. et 
al., 2006.  The results of the MPE are available from the WRAP RMC website 
(http://pah.cert.ucr.edu/aqm/308/eval.shtml)  

 

2002 Planning Scenario 

 

The 2000-04 baseline period planning case scenario is referred to as “Plan02”. The purpose of 
the Plan02 scenario is to simulation the air quality representative of baseline emission patterns 
based on average, or “typical”, conditions.  This scenario provides a basis for comparison with 
the future year 2018 scenario based on projected emissions, as well as to gauge reasonable 
progress with respect to future year visibility.   

Plan02 Simulations Input Data  

Input data used for the 2002 Planning model simulations consisted of the same meteorology as 
for the 2002 Base Case and the Plan02 emission inventories described under the Emissions 
Modeling section of the TSS.   

The setup of the CMAQ model (including science options, run scripts, simulation periods, and 
ancillary data) for the Plan02 cases was identical to that used in the Base02 modeling, as  
described in the 2002 MPE report (Tonnesen et al., 2006). In summary, CMAQ v4.5 (released by 
EPA in October 2005) was used on the RPO Unified 36-km domain. The Carbon Bond 
Mechanism version 4 (CB4) with RADM aqueous chemistry, the SORGAM organic aerosol 
algorithm, and all other science algorithms detailed in Tonnesen et al., 2006 were used. Initial 
condition (IC) data for January 1, 2002, were developed using a 15-day spin-up period 
(December 16-31, 2001). Boundary condition (BC) data were generated in an annual simulation 
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of the global-scale GEOS-Chem model that was completed by Jacob et al. (http://www-
as.harvard.edu/chemistry/trop/geos/) for calendar year 2002.  

 

 

Comparison With Base02 Simulations 

For each of the three Plan02 emissions datasets, annual visibility modeling was performed using 
the CMAQ model. This was a key aspect of the QA procedure, since errors in the emissions 
inventories that might not be apparent during the emissions QA steps might be more readily 
detected in the results from the CMAQ modeling.  

In our initial analysis of the Plan02 scenario, plots were prepared for QA purposes that compared 
the Plan02a CMAQ results with the Base02a CMAQ results for daily and monthly averages. 
After revising Plan02a to create Plan02b and Plan02c, additional QA plots were prepared to 
compare the CMAQ results of each revised Plan02 case to the previous iteration. These were 
prepared as Program for the Analysis and Visualization of Environmental data (PAVE) spatial 
plots showing the change in individual PM2.5 species concentrations as daily, monthly, and 
annual averages. The final set of analysis products,  available on the RMC web site, include 
PAVE difference plots comparing the CMAQ-predicted annual average species concentrations 
from the Plan02c case with those from the Base02b case. Note that these plots are not useful for 
visibility planning purposes, but are being provided to show the magnitudes of changes when 
moving from the 2002 Base Case to the 2002 Planning Case—in other words, from the actual 
emissions for the year 2002 to the “typical-year” emissions created for the final Plan02 scenario. 
The primary analysis “product” from the Plan02 CMAQ modeling is the use of its output in 
combination with the CMAQ output from the 2018 modeling to develop the visibility progress 
calculations and glide path plots, described below.  

 

2018 Model Simulations 

 

The 2018 future-year base case scenario is referred to as “2018 Base Case” or “Base18”.  The 
purpose of the Base18 scenario is to simulation the air quality representative of conditions in 
future year 2018 with respect to sources of criteria and particulate matter air pollutants, taking 
into consideration growth and controls. Modeling results based on this emission inventory are 
used to define the future year ambient air quality and visibility metrics. 

Base18 Simulation Input Data  

Input data used for the 2018 Base Case model simulations consisted of the same meteorology as 
for the 2002 Base Case and the Base18 emission inventories described under the Emissions 
Modeling section of the TSS.   

The setup of the CMAQ model (including science options, run scripts, simulation periods, and 
ancillary data) for the Base18 cases was identical to that used in the Base02 modeling, as  
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described in the 2002 MPE report (Tonnesen et al., 2006). In summary, CMAQ v4.5 (released by 
EPA in October 2005) was used on the RPO Unified 36-km domain. The Carbon Bond 
Mechanism version 4 (CB4) with RADM aqueous chemistry, the SORGAM organic aerosol 
algorithm, and all other science algorithms detailed in Tonnesen et al., 2006 were used. Initial 
condition (IC) data for January 1, 2002, were developed using a 15-day spin-up period 
(December 16-31, 2001). Boundary condition (BC) data were generated in an annual simulation 
of the global-scale GEOS-Chem model that was completed by Jacob et al. (http://www-
as.harvard.edu/chemistry/trop/geos/) for calendar year 2002.  

Base18 Simulation Results 

The purpose of modeling 2018 visibility is to compare the 2018 visibility predictions to the 2002 
typical-year visibility modeling results, as discussed below. Some improvements in visibility by 
2018 are expected because of reductions in emissions due to currently planned regulations and 
technology improvements. A brief summary is provided here of the comparison between the 
2018 and 2002 results using annual average PAVE spatial plots. The goal of this summary is to 
convey the scale and spatial extent of changes in key PM2.5 species from 2002 to 2018. For 
planning purposes, on the other hand, states and tribes should focus on the visibility projections 
and glide path calculations at individual Class I Areas.  

Figures 1 through 4 show the annual average concentrations for sulfate, nitrate, PM2.5 and model-
reconstructed visibility (in deciviews), respectively. In each figure, the bottom two plots show the 
modeled concentration or deciviews for the Plan02b and Base18b cases, while the top plot shows 
the change in visibility calculated as Base18b minus Plan02b. The Plan02b results are presented 
here instead of Plan02c results because these plots had previously been prepared with version B. 
As the differences between Plan02b and Plan02c are extremely small, new plots prepared using 
Plan02c would be essentially identical to the results in Figure 1 through 4. 

In each of the top plots in the four figures, cool colors indicate areas in which model-predicted 
visibility improved from 2002 to 2018, while warm colors indicate areas where modeled 
visibility became worse over that period. Figure 1 shows that reductions in sulfate were largest in 
the southwest corner of the WRAP region and in Texas and Oklahoma. This results from planned 
SOx emissions reductions in the CENRAP region. There were smaller reductions in sulfate in the 
Los Angeles area, western Washington state, and southern Nevada. There were small increases of 
sulfate, mostly in Wyoming, due to growth in SOx emissions. Most regions of the WRAP domain 
had low concentrations of sulfate in 2002 and little change in sulfate by 2018. 

Figure 2 shows the results for nitrate. In the both 2002 and 2018, the modeled nitrate was greatest 
in California, and there were reduction in nitrate in that state in 2018 because of reductions in 
mobile-source NOx emissions. There were small reductions in the Phoenix area as well, also 
from reductions in mobile-source NOx emissions.  

Figure 3 shows the comparison of PM2.5 for 2002 and 2018. In most areas of the WRAP region, 
changes in PM2.5 were less than 1 µg/m3. Locations with increases in PM2.5 correspond to areas 
of increased sulfate (see Figure 3-1). Areas with the largest reductions in PM2.5 were the areas in 
California that had large reductions in modeled nitrate in 2018 (see Figure 3-2). Results for other 
species that contribute to PM2.5 are available on the RMC web site at 
http://pah.cert.ucr.edu/aqm/308/cmaq.shtml#base18bvsplan02b. 
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Figure 4 compares model-reconstructed visibility for 2002 and 2018. Note that these results are 
calculated using the modeled relative humidity (RH), so they differ from the results that use site-
specific monthly average RH. Nonetheless, the results in Figure 4 are indicative of the direction 
and magnitude of visibility changes in from 2002 to 2018. Although the largest improvements 
are in California and the Pacific Northwest, there were improvements throughout the WRAP 
region. The change in deciviews is more dramatic than the change in PM2.5 mass (Figure 3) 
because the visibility in deciviews is a relative metric, so small mass changes in PM2.5 in good 
visibility areas can result in large relative improvements in visibility. 
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Figure 1. Annual average aerosol sulfate (ASO4) concentration comparisons between 
Base18b and Plan02b. Top plot: difference between the two (Base18b – Plan02b); 

bottom left plot: Plan02b results; bottom right plot: Base18b results. 
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Figure 2. Annual average aerosol nitrate (ANO3) concentration comparisons between 
Base18b and Plan02b. Top plot: difference between the two (Base18b – Plan02b); 

bottom left plot: Plan02b results; bottom right plot: Base18b results. 
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Figure 3. Annual average PM2.5 concentration comparisons between Base18b 
and Plan02b. Top plot: difference between the two (Base18b – Plan02b); 

bottom left plot: Plan02b results; bottom right plot: Base18b results. 
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Figure 4. Annual average deciview comparisons between Base18b and Plan02b. 
Top plot: difference between the two (Base18b – Plan02b); bottom left 

plot: Plan02b results; bottom right plot: Base18b results. 
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Visibility Projections 

The Regional Haze Rule (RHR) goals include achieving natural visibility conditions at 156 
Federally mandated Class I areas by 2064. In more specific terms, that RHR goal is defined as 
(1) visibility improvement toward natural conditions for the 20% of days that have the worst 
visibility (termed “20% worst,” or W20%, visibility days) and (2) no worsening in visibility for 
the 20% of days that have the best visibility (“20% best,” or B20%, visibility days). One compo-
nent of the states’ demonstration to EPA that they are making reasonable progress toward this 
2064 goal is the comparison of modeled visibility projections for the first milestone year of 2018 
with what is termed a uniform rate of progress (URP) goal. As explained in detail below, the 
2018 URP goal is obtained by constructing a “linear glide path” (in deciviews) that has at one 
end the observed visibility conditions during the mandated five-year (2000-2004) baseline period 
and at the other end natural visibility conditions in 2064; the visibility value that occurs on the 
glide path at year 2018 is the URP goal.  

Preliminary WRAP 2018 visibility projections have been made using the Plan02c and Base18b 
CMAQ 36-km modeling results, following EPA guidance that recommends applying the 
modeling results in a relative sense to project future-year visibility conditions (U.S. EPA, 2001, 
2003a, 2006). Projections are made using relative response factors (RRFs), which are defined as 
the ratio of the future-year modeling results to the current-year modeling results. The calculated 
RRFs are applied to the baseline observed visibility conditions to project future-year observed 
visibility. These projections can then be used to assess the effectiveness of the simulated 
emission control strategies that were included in the future-year modeling. The major features of 
EPA’s recommended visibility projections are as follows (U.S. EPA, 2003a,b, 2006): 

• Monitoring data should be used to define current air quality. 

• Monitored concentrations of PM10 are divided into six major components; the first five 
are assumed to be PM2.5 and the sixth is PM2.5-10. 

• SO4 (sulfate) 
• NO3 (particulate nitrate) 
• OC (organic carbon) 
• EC (elemental carbon) 
• OF (other fine particulate or soil) 
• CM (coarse matter). 

• Models are used in a relative sense to develop RRFs between future and current predicted 
concentrations of each component. 

• Component-specific RRFs are multiplied by current monitored values to estimate future 
component concentrations. 

• Estimates of future component concentrations are consolidated to provide an estimate of 
future air quality. 
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• Future estimated air quality is compared with the goal for regional haze to see whether 
the simulated control strategy would result in the goal being met. 

• It is acceptable to assume that all measured sulfate is in the form of ammonium sulfate 
[(NH4)2SO4] and all particulate nitrate is in the form of ammonium nitrate [NH4NO3]. 

To facilitate tracking the progress toward visibility goals, two important visibility parameters are 
required for each Class I area: 

• Baseline Conditions: “Baseline Conditions” represent visibility for the B20% and W20% 
days for the initial five-year baseline period of the regional haze program. Baseline 
Conditions are calculated using monitoring data collected during the 2000-2004 five-year 
period and are the starting point in 2004 for the uniform rate of progress (URP) glide path 
to Natural Conditions in 2064 (U.S. EPA, 2003a). 

• Natural Conditions: “Natural Conditions,” the RHR goal for 2064 for the Federally 
mandated Class I areas, represent estimates of natural visibility conditions for the B20% 
and W20% days at a given Class I area. 

 

Baseline Conditions 

Baseline Conditions for Class I areas are calculated using fine and coarse PM concentrations 
measured at Interagency Monitoring of Protected Visual Environments (IMPROVE) monitors 
(Malm et al., 2000). Each Class I area in the WRAP domain has an associated IMPROVE PM 
monitor. The IMPROVE monitors do not measure visibility directly, but instead measure 
speciated fine particulate (PM2.5) and total PM2.5 and PM10 mass concentrations from which 
visibility is calculated using the IMPROVE aerosol extinction equation, discussed later.  

Visibility conditions are estimated starting with the IMPROVE 24-h average PM mass 
measurements related to six PM components of light extinction: 

• Sulfate [(NH4)2SO4] 

• Particulate nitrate [(NH4NO3] 

• Organic matter [OMC] 

• Light-absorbing carbon [LAC] or elemental carbon [EC] 

• Soil 

• Coarse matter [CM] 

The IMPROVE monitors do not directly measure some of these species, so assumptions are 
made as to how the IMPROVE measurements can be adjusted and combined to obtain these six 
components. For example, sulfate and particulate nitrate are assumed to be completely 
neutralized by ammonium and only the fine mode (PM2.5) is speciated to obtain sulfate and 
nitrate measurements (that is, any coarse-mode sulfate and nitrate in the real atmosphere may be 
present in the IMPROVE CM measurement). Concentrations for the above six components of 
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light extinction in the IMPROVE aerosol extinction equation are obtained from the IMPROVE 
measured species using the formulas shown in Table 1. 

Table 1. Definition of IMPROVE components from measured species. 

IMPROVE 
Component Calculation of Component from IMPROVE Measured Species 

Sulfate 1.375 x (3 x S) 

Nitrate 1.29 x NO3- 

OMC 1.4 x OC 

LAC EC 

Soil (2.2 x Al) + (2.49 x Si) + (1.63 x Ca) + (2.42 x Fe) + (1.94 x Ti) 

CM MT – MF 

 

where 

• S is elemental sulfur as determined from proton-induced x-ray emissions (PIXE) analysis 
of the IMPROVE Module A. To estimate the mass of the sulfate ion (SO4

=), S is 
multiplied by 3 to account for the presence of oxygen. If S is missing then the sulfate 
(SO4) measured by ion chromatography analysis of Module B is used to replace (3 x S). 
For the IMPROVE aerosol extinction calculation, sulfate is assumed to be completely 
neutralized by ammonium (1.375 x SO4). 

• NO3
- is the particulate nitrate measured by ion chromatography analysis of Module B. For 

the IMPROVE aerosol extinction calculation, it is assumed to be completely neutralized 
by ammonium (1.29 x NO3). 

• The IMPROVE organic carbon (OC) measurements are multiplied by 1.4 to obtain 
organic matter (OMC), which adjusts the OC mass for other elements assumed to be 
associated with OC. 

• Elemental carbon (EC) is also referred to as light-absorbing carbon (LAC). 

• Soil is determined as a sum of the masses of those elements (measured by PIXE) 
predominantly associated with soil (Al, Si, Ca, Fe, K, and Ti), adjusted to account for 
oxygen associated with the common oxide forms. Because K is also a product of the 
combustion of vegetation, it is represented in the formula by 0.6 x Fe and is not shown 
explicitly. 

• MT and MF are total PM10 and PM2.5 mass, respectively.  

Associated with each PM species is an extinction efficiency that converts concentrations (in 
µg/m3) to light extinction (in inverse megameters, Mm-1), as listed below. Sulfate and nitrate are 
hygroscopic, so relative humidity (RH) adjustment factors, f(RH), are used to increase the 
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particles’ extinction efficiency with increasing RH; this accounts for the particles’ taking on 
water and having greater light scattering. Note that some organic matter (OMC) compounds may 
also have hygroscopic properties, but the IMPROVE aerosol extinction equation assumes OMC 
is nonhygroscopic. 

βSulfate = 3 x f(RH) x [sulfate] 

βNitrate = 3 x f(RH) x [nitrate] 

βOM = 4 x [OMC] 

βEC = 10 x [EC] 

βSoil = 1 x [soil] 

βCM = 0.6 x [CM] 

The total light extinction (βext) is assumed to be the sum of the light extinctions due to the six PM 
species listed above plus Rayleigh (blue sky) background extinction (βRay), which is assumed to 
be 10 Mm-1. This is reflected in the IMPROVE extinction equation: 

βext  = βRay + bSulfate + βNitrate + βEC +βOMC + βSoil + βCM 

The total light extinction (βext) in Mm-1 is related to visual range (VR) in kilometers using the 
following relationship: 

VR = 3912 / βext 

The RHR requires that visibility be expressed in terms of a haze index (HI) in units of deciview 
(dv), which is calculated as follows: 

HI = 10 ln(βext/10) 

The equations above, with measurements from the associated IMPROVE monitor, are used to 
estimate the daily average visibility at each Class I area for each IMPROVE monitored day. For 
each year from the 2000-2004 baseline period, these daily average visibility values are then 
ranked from highest to lowest. The “worst days” visibility for each of the five years in the 
baseline period is defined as the average visibility across the 20% worst-visibility days (highest 
deciview values); similarly, the “best days” visibility is defined as the average visibility across 
the 20% best-visibility days (lowest deciview values) for each year. The Baseline Conditions for 
the best and worst days are defined as the five-year average of the B20% visibility days and of 
the W20% visibility days, respectively, across the five-year baseline period.  

The set of equations given above for relating measured PM species to visibility (light extinction) 
are referred to as the “Old IMPROVE” equation. The IMPROVE Steering Committee has 
developed a “New IMPROVE” equation that they believe better represents the fit between 
measured PM species concentrations and visibility impairment. Although conceptually similar to 
the Old IMPROVE equation, the New IMPROVE equation includes updates to many of the 
parameters and the addition of extinctions due to NO2 absorption and sea salt. 2018 visibility 
projections and comparisons with the URP glide path goals were performed using both the New 
and Old IMPROVE equations. The reader is referred elsewhere for details on the New 
IMPROVE extinction equation (e.g., EPA, 2006a,b). 
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Mapping Model Results to IMPROVE Measurements 

As noted above, future-year visibility at Class I areas is projected by using modeling results in a 
relative sense to scale current observed visibility for the B20% and W20% visibility days. This 
scaling is done using RRFs, the ratios of future-year modeling results to current-year results. 
Each of the six components of light extinction in the IMPROVE reconstructed mass extinction 
equation is scaled separately. Because the modeled species do not exactly match up with the 
IMPROVE measured PM species, assumptions must be made to map the modeled PM species to 
the IMPROVE measured species for the purpose of projecting visibility improvements. For 
example, in the model’s chemistry (which explicitly simulates ammonium), sulfate may or may 
not be fully neutralized; the IMPROVE extinction equation, on the other hand, assumes that 
observed sulfate is fully neutralized by ammonium. For the CMAQ v4.5 model (September 2005 
release) used in the WRAP RMC modeling, the mapping of modeled species to IMPROVE 
measured PM species is listed in Table 2.  

Table 2. Mapping of CMAQ v4.5 modeled species concentrations 
to IMPROVE measured components. 

IMPROVE 
Component CMAQ V4.3 Species  

Sulfate 1.375 x (ASO4J + ASO4I) 

Nitrate 1.29 x (ANO3J + ANO3I) 

OMC AORGAJ + AORGAI + AORGPAJ + AORGPAI + AORGBJ + AORGBI 

LAC AECJ + AECI 

Soil A25J + A25I 

CM ACORS + ASEAS + ASOIL  

 

Projecting Visibility Changes Using Modeling Results 

RRFs calculated from modeling results can be used to project future-year visibility. For the urrent 
modeling efforts, RRFs are the ratio of the 2018 modeling results to the 2002 modeling results, 
and are specific to each Class I area and each PM species. RRFs are applied to the Baseline 
Condition observed PM species levels to project future-year PM levels, which are then used with 
the IMPROVE extinction equation listed above to assess visibility. The following six steps are 
used to project future-year visibility for the B20% and W20% visibility days (the discussion 
below is for W20% days but also applies to B20% days): 

1. For each Class I area and each monitored day, daily visibility is ranked using IMPROVE 
data and IMPROVE extinction equation for each year from the five-year baseline period 
(2000-2004) to identify the W20% visibility days for each year. 

2. Use an air quality model to simulate a base-year period (ideally 2000-2004, but in reality 
just 2002) and a future year (e.g., 2018), then apply the resulting information to develop 
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Class-I-area-specific RRFs for each of the six components of light extinction in the 
IMPROVE aerosol extinction equation. 

3. Multiply the RRFs by the measured 24-h PM data for each day from the W20% days for 
each year from the five-year baseline period to obtain projected future-year (2018) 24-h 
PM concentrations for the W20% days. 

4. Compute the future-year daily extinction using the IMPROVE aerosol extinction equation 
and the projected PM concentrations for each of the W20% days in the five-year baseline 
from Step 3. 

5. For each of the W20% days within each year of the five-year baseline, convert the future-
year daily extinction to units of deciview and average the daily deciview values within 
each of the five years separately to obtain five years of average deciview visibility for the 
W20% days. 

6. Average the five years of average deciview visibility to obtain the future-year visibility 
Haze Index estimate that is compared with the 2018 progress goal. 

In calculating the RRFs, EPA draft guidance (U.S. EPA, 2001, 2006a) recommends selecting 
modeled PM species concentrations “near” the monitor by taking a spatial average of PM 
concentrations across a grid-cell-resolution–dependent NX by NY array of cells centered on the 
grid containing the monitor. For the WRAP 36-km CMAQ modeling, the model estimates for 
just the grid cell containing the monitor are used (i.e., NX=NY=1).  

 For the preliminary 2018 visibility projections, results are presented only for “Method 1,” which 
is the recommended approach in EPA’s draft modeling guidance documents (U.S. EPA, 2001, 
2006a). In the Method 1 Average RRF Approach, an average RRF for the W20% days from 2002 
(Modeled Worst Days) is obtained for the Plan02c and the Base18b CMAQ simulations by 
averaging the PM concentration components across the Modeled Worst Days and then 
calculating the (future year):(base year) ratio of the average PM concentrations. For example, if 
SO4i,j is the measured sulfate concentrations at Class I area j for the i=1,…,N 20% worst 
visibility days in 2002, then the RRF for sulfate on the W20% days would be obtained as: 
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For each Class I area and each of the W20% days, the average RRF for each PM component 
would be applied to concentrations for the W20% days from the 2000-2004 baseline period to 
estimate future-year PM concentrations for each of the W20% days. Extinction and HI would 
then be calculated to obtain the projected future-year visibility conditions using the procedures 
given previously.  

Glide Path to Natural Conditions 
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The presumptive visibility target for 2018 is the URP goal that is obtained by constructing a 
linear glide path from the current Baseline Conditions to Natural Conditions in 2064 (both 
expressed in deciviews). For instance, Figure 5 displays an example visibility glide path for the 
Grand Canyon National Park (GRCA) Class I area. EPA’s default Natural Conditions value for 
the W20% days (U.S. EPA, 2003b), shown as the green line, is the 2064 visibility goal at GRCA 
of 6.95 dv. The blue diamonds at the left of the plot are the annual average current conditions, 
based on IMPROVE observations for the W20% days as obtained from the Visibility Information 
Exchange Web System (VIEWS) web site (http://vista.cira.colostate.edu/views/). These annual 
average visibility values for the 20% worst days allow an assessment of trends and the year-to-
year variation in visibility. The Baseline Conditions are the average of the W20% visibility from 
2000-2004, which is the starting point for the glide path in 2004 (12.04 dv for GRCA). A linear 
URP from the Baseline Conditions in 2004 to Natural Conditions in 2064 (sloping pink line with 
triangles) is assumed, and the value on the glide path at 2018 is the presumptive URP visibility 
target that the modeled 2018 projections are compared against to judge progress. In this example, 
the visibility progress goal in 2018 would be 10.85 dv. Meeting this would require a 1.19 dv 
reduction in visibility by 2018 to meet that milestone year’s visibility progress target at the Grand 
Canyon National Park.  
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Figure 5. Example of URP glide path using IMPROVE data from the Grand Canyon 
National Park for the W20% days and comparison with Base18b visibility projections. 
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Preliminary Visibility Projection Results 

For all of the WRAP Class I areas, the RMC performed preliminary 2018 visibility projections 
and compared them to the 2018 URP goals using the Plan02c and Base18b CMAQ modeling 
results and the Old and New IMPROVE equations. As an example, Figure 5 above compares the 
Base18b visibility projections with the URP goal based on the glide path for GRCA and the Old 
IMPROVE equation. To achieve the 2018 URP goal, the modeled 2018 visibility projection 
would have to show a 1.19 dv (=12.04-10.85) reduction. However, the modeled 2018 visibility 
projection shows only a 0.33 dv (=12.04-11.71) reduction by 2018, which indicates that the 
emission controls simulated in case Base18b would not achieve the modeled URP goal; the 2018 
visibility projection achieves only 28% of the goal (28% = 100 x 0.33/1.19). Figure 6 displays 
the 2018 visibility projections for all WRAP Class I areas, using both the Old and New 
IMPROVE equations, expressed as a percentage of achieving the URP goal, with values of 100% 
or greater achieving the goal. Using the procedures outlined above, none of the WRAP Class I 
areas are projected to achieve their URP goals. There are various reasons for this, such as the 
presence of W20% days that are dominated by emissions from sources that are not controllable, 
such as wildfires, dust, and/or international transport. Additional analysis of these results and 
alternative projection techniques are currently under study. 
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Method 1 predictions for Colorado Plateau and Desert Southwest sites
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Method 1 predictions for North, Great Basin and Rockies sites
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Method 1 predictions for Pacific Northwest and California sites
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Figure 6. 2018 visibility projections at WRAP Class I areas expressed as a 
percent of achieving the 2018 URP goal using the Old and New IMPROVE 

equation and the WRAP Base18c CMAQ 36-km modeling results. 
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PM Source Apportionment 

Impairment of visibility in Class I areas is caused by a combination of local air pollutants and 
regional pollutants that are transported long distances. To develop effective visibility improve-
ment strategies, the WRAP member states and tribes need to know the relative contributions of 
local and transported pollutants, and which emissions sources are significant contributors to 
visibility impairment at a given Class I area.  

A variety of modeling and data analysis methods can be used to perform source apportionment of 
the PM observed at a given receptor site. Model sensitivity simulations have been used in which 
a “base case” model simulation is performed and then a particular source is “zeroed out” of the 
emissions. The importance of that source is assessed by evaluating the change in pollutants at the 
receptor site, calculated as pollutant concentration in the sensitivity case minus that in the base 
case. This approach is known as a “brute force” sensitivity because a separate model run is 
required for each sensitivity.  

An alternative approach is to implement a mass-tracking algorithm in the air quality model to 
explicitly track for a given emissions source the chemical transformations, transport, and removal 
of the PM that was formed from that source. Mass tracking methods have been implemented in 
both the CMAQ and CAMx air quality models. Initial work completed by the RMC during 2004 
used the CMAQ Tagged Species Source Apportionment (TSSA) method. Unfortunately, there 
were problems with mass conservation in the version of CMAQ used in that study, and these 
affected the TSSA results. A similar algorithm has been implemented in CAMx, the PM Source 
Apportionment Technology (PSAT). Comparisons of TSSA and PSAT showed that the results 
were qualitatively similar, that is, the relative ranking of the most significant source contributors 
were similar for the two methods. However, the total mass contributions differed. With separate 
funding from EPA, UCR has implemented a version of TSSA in the new CMAQ release (v4.5) 
that corrects the mass conservation error, but given the uncertainty of the availability of this 
update, the CAMx/PSAT source apportionment method was used for the WRAP modeling 
analysis.  

The main objective of applying CAMx/PSAT is to evaluate the regional haze air quality for 
typical 2002 (Plan02c) and future-year 2018 (Base18b) conditions. These results are used 

• to assess the contributions of different geographic source regions (e.g., states) and source 
categories to current (2002) and future (2018) visibility impairment at Class I areas, to 
obtain improved understanding of (1) the causes of the impairment and (2) which states 
are included in the area of influence (AOI) of a given Class I area; and  

• to identify the source regions and emissions categories that, if controlled, would produce 
the greatest visibility improvements at a Class I area. 

CAMx/PSAT 

The PM Source Apportionment Technology performs source apportionment based on user-
defined source groups. A source group is the combination of a geographic source region and an 
emissions source category. Examples of source regions include states, nonattainment areas, and 
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counties. Examples of source categories include mobile sources, biogenic sources, and elevated 
point sources; PSAT can even focus on individual sources. The user defines a geographic source 
region map to specify the source regions of interest. He or she then inputs each source category 
as separate, gridded low-level emissions and/or elevated-point-source emissions. The model then 
determines each source group by overlaying the source categories on the source region map. For 
further information, please refer to the white paper on the features and capabilities of PSAT 
(http://pah.cert.ucr.edu/aqm/308/reports/PSAT_White_Paper_111405_final_draft1.pdf), with 
additional details available in the CAMx user’s guide (ENVIRON, 2005; http://www.camx.com). 

PM source apportionment modeling was performed for aerosol sulfate (SO4) and aerosol nitrate 
(NO3) and their related species (e.g., SO2, NO, NO2, HNO3, NH3, and NH4). The PSAT 
simulations include 9 tracers, 18 source regions, and 6 source groups. The computational cost for 
each of these species differs because additional tracers must be used to track chemical 
conversions of precursors to the secondary PM species SO4, NO3, NH4, and secondary organic 
aerosols (SOA). Table 3 summarizes the computer run time required for each species. The 
practical implication of this table for WRAP is that it is much more expensive to perform PSAT 
simulations for NO3 and especially for SOA than it is to perform simulations for other species. 

Table 3. Benchmarks for PSAT computational costs for each PM species. 
Run time is for one day (01/02/2002) on the WRAP 36-km domain.  

Species No. of Species 
Tracers 

RAM 
Memory 

Disk Storage 
per Day 

Run Time with 
1 CPU 

SO4 2 1.6 GB 1.1 GB 4.7 h/day 

NO3 7 1.7 GB 2.6 GB 13.2 h/day 

SO4 and NO3 
combined 

9 1.9 GB 3.3 GB 16.8 h/day 

SOA 14 6.8 GB Not tested Not tested 

Primary PM 
species 

6 1.5 GB 3.0 GB 10.8 h/day 

Two annual 36-km CAMx/PSAT model simulations were performed: one with the Plan02c 
typical-year baseline case and the other with the Base18b future-year case. It is expected that the 
states and tribes will use these results to assess the sources that contribute to visibility 
impairment at each Class I Area, and to guide the choice of emission control strategies. The 
RMC web site includes a full set of source apportionment spatial plots and receptor bar plots for 
both Plan02b and Base18b.  These graphical displays of the PSAT results, as well as additional 
analyses of these results are available on the TSS under 
http://vista.cira.colostate.edu/tss/Tools/ResultsSA.aspx 
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CAMx/PSAT 2002 and 2018 Setup 

PSAT source apportionment simulations for 2002 and 2018 were performed using CAMx v4.30. 
Table 4 lists overall specifications for the 2002 PSAT simulations. The domain setup was 
identical to the standard WRAP CMAQ modeling domain. The CAMx/PSAT run-time options 
are shown in Table 5. The CAMx/PSAT computational cost for one simulation day with source 
tracking for sulfate (SO4) and nitrate (NO3) is approximately 14.5 CPU hours with an AMD 
Opteron CPU.  The source regions used in the PSAT simulations are shown in Figure 7 and 
Table 4. The six emissions source groups are described in Table 6.  The development of these 
emissions data are described in more detail below.  

The annual PSAT run was divided into four seasons for modeling. The initial conditions for the 
first season (January 1 to March 31, 2002) came from a CENRAP annual simulation. For the 
other three seasons, we allowed 15 model spin-up days prior to the beginning of each season. 
Based on the chosen set of source regions and groups, with nine tracers, and with a minimum 
requirement of 87,000 point sources and a horizontal domain of 148 by 112 grid cells with 19 
vertical layers, the run-time memory requirement is 1.9 GB. Total disk storage per day is 
approximately 3.3 GB. Although the RMC’s computation nodes are equipped with dual Opteron 
CPUs with 2 GB of RAM and 1 GB of swap space, the high run-time memory requirements 
prevented running PSAT simulations using the OpenMP shared memory multiprocessing 
capability implemented in CAMx. 

Table 4. WRAP 2002 CAMx/PSAT specifications.  

WRAP PSAT Specs Description 

Model CAMx v4.30 

OS/compiler Linux, pgf90 v.6.0-5 

CPU type AMD Opteron with 2 GB of RAM 

Source region 18 source regions; see Figure 4.1 and Table 4.4 

Emissions source groups Plan02b, 6 source groups; see Table 4.5 

Initial conditions 
From CENRAP 
(camx.v4.30.cenrap36.omp.2001365.inst.2) 

Boundary conditions 3-h BC from GEOS-Chem v2 

Table 5. WRAP CAMx/PSAT run-time options. 

WRAP PSAT specs Description 

Advection solver PPM 

Chemistry parameters CAMx4.3.chemparam.4_CF 

Chemistry solver CMC 

Plume-in-grid Not used 
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WRAP PSAT specs Description 

Probing tool PSAT 

Dry/wet deposition TRUE (turned on) 

Staggered winds TRUE (turned on) 

Table 6. WRAP CAMx/PSAT source regions cross-reference table.  

Source  
Region ID 

Source Region 
Description1 

Source  
Region ID 

Source Region  
Description1 

1 Arizona (AZ) 10 South Dakota (SD) 

2 California (CA) 11 Utah (UT) 

3 Colorado (CO) 12 Washington (WA) 

4 Idaho (ID) 13 Wyoming (WY) 

5 Montana (MT) 14 Pacific off-shore & Sea of Cortez 
(OF) 

6 Nevada (NV) 15 CENRAP states (CE) 

7 New Mexico (NM) 16 Eastern U.S., Gulf of Mexico, & 
Atlantic Ocean (EA) 

8 North Dakota (ND) 17 Mexico (MX) 

9 Oregon (OR) 18 Canada (CN) 
1The abbreviations in parentheses are used to identify source regions in PSAT receptor bar plots. 
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Figure 7. WRAP CAMx/PSAT source region map. Table 6 defines the source region IDs. 
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Table 7. WRAP CAMx/PSAT emissions source groups. 

Emissions 
Source 
Groups 

Low-level Sources Elevated Sources 

1 Low-level point sources (including stationary off-
shore) 

Elevated point sources (including 
stationary off-shore) 

2 Anthropogenic wildfires (WRAP only) Anthropogenic wild fires (WRAP only) 

3 Total mobile (on-road, off-road, including planes, 
trains, ships in/near port, off-shore shipping) 

 

4 Natural emissions (natural fire, WRAP only, 
biogenics) 

Natural emissions (natural fire, WRAP 
only, biogenics) 

5 Non-WRAP wildfires (elevated fire sources in 
other RPOs) 

Non-WRAP wild fires (elevated fire 
sources in other RPOs) 

6 Everything else (area sources, all dust, fugitive 
ammonia, non-elevated fire sources in other 
RPOs) 

 

PSAT Results  

The source apportionment algorithms implemented in CAMx generate output files in the same 
format as the standard modeled species concentrations files. This typically consists of a 
two-dimensional, gridded dataset of hourly-average surface concentrations for each source group 
tracer that gives the contribution of the tracer to all the surface grid cells in the model domain for 
each hour of the simulation. Three-dimensional instantaneous concentrations are also output for 
the last two hours of the simulation, which are used to restart the model. Although there are 
options to output hourly 3-D average tracer concentrations, the model is usually configures to 
output only the model’s surface layer concentrations because of the vast disk storage space 
needed for the 3-D file output for all the source group contributions.  

The source apportionment model results are typically presented in two ways : 

• Spatial plots showing the area of influence of a source group’s PM species contributions 
throughout the model domain, either at a given hourly-average point in time or averaged 
over some time interval (e.g., monthly average).  

• Receptor bar plots showing the rank order of source groupings that contribute to PM 
species at any given receptor site. These plots also can be at a particular point in time or 
averaged over selected time intervals—for example, the average source contributions for 
the 20% worst visibility days.  

If the 3-D tracer output files are saved, it is also possible to prepare animations of PM species 
plumes from each of the source groups. However, these plots are less useful than the others for 
quantitative analysis, are expensive to produce, and require saving 3-D hourly output, which is 
disk-space intensive. The primary products of the WRAP PSAT modeling were receptor bar 
plots showing the emission source groups that contribute the most to the model grid cells 
containing each IMPROVE monitoring site and other receptor sites identified by WRAP. 
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Model Sensitivity Simulations 

A variety of sensitivity simulations were conducted by the RMC as part of their modeling efforts 
to support the WRAP in addressing the Regional Haze Rule requirements.  These sensitivity 
simulations are described below.  

2002 Clean Case 

There are many natural sources of ambient PM2.5, both direct emissions of primary PM2.5 (such 
as windblown dust) and emissions of gaseous species that undergo photochemical transformation 
or condensation to form secondary PM2.5. Natural sources of PM2.5 are of concern because they 
represent sources that cannot be controlled. Estimates of natural haze levels have been developed 
by EPA for visibility planning purposes and are described in Guidance for Estimating Natural 
Visibility Conditions Under the Regional Haze Rule (U.S. EPA, 2003a). These are the natural 
haze levels to be used in glide path calculations, such as those we performed as part of the 
visibility projections for 2018. However, the natural haze levels developed by EPA for glide path 
calculations were based on ambient data analysis, not on visibility modeling. This question thus 
arises: Would modeled levels of natural haze be consistent with the values estimated by EPA for 
visibility planning? If the natural haze levels calculated by the model were substantially higher 
than the levels used for planning purposes, this would make it more difficult for modeling studies 
to demonstrate progress in attaining visibility goals, because the model would predict haze levels 
that exceeded EPA’s natural haze levels even if all anthropogenic sources of PM2.5 were removed 
from the modeling. The RMC explored this issue by conducting a CMAQ sensitivity “clean 
conditions” simulation 

There are many uncertainties and unknowns regarding natural emissions. There have been only 
limited studies of natural emissions conditions. It is known that there are very large uncertainties 
in the categories of natural emissions included in the WRAP emissions inventories, and that 
some categories of natural emissions are not included at all. Also, it is difficult to know what 
truly natural emissions would have been like in the absence of human modifications of the 
environment. For example, wildfire emissions are a large source of natural emissions in our 
modeling, but how much larger might that source be in the absence of fire suppression efforts? 
For all of these reasons, it was decided to describe this sensitivity simulation as a “clean 
conditions” scenario rather than a “natural conditions” scenario. In this simulation, all 
anthropogenic emissions were removed from the inventory and only those emissions that were 
defined as biogenic in the 2002 base case (Base02) were included. Thus, this model simulation 
does not represent true natural conditions. It indicates instead the lowest haze levels that could be 
achieved in the model if all anthropogenic emissions were zeroed out. 

Emission Inventories 

The emissions for the clean 2002 sensitivity case were derived from case Base02a. Because it 
was a sensitivity analysis to test the impacts of natural emissions sources on visibility, it is 
referred to it as scenario Base02nt, where “nt” refers to natural. The following emissions 
categories in Base02nt were included: 

• Biogenics: Generated in case Base02a by BEIS3.12 using SMOKE. 
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• WRAP Ammonia: The Base02a ammonia emissions for the WRAP region were developed 
with a GIS by ENVIRON. The five emissions category modeled included three 
anthropogenic sources (domestic animals, livestock, and fertilizer application) and two 
natural sources (soils and wildlife). Only the two natural sources in scenario Base02nt 
were used. 

• CENRAP and MRPO Ammonia: To create ammonia inventory files for only natural 
sources, we used a list of SCCs representing natural sources to extract the emissions 
records of these sources from the monthly inventory files that were used in Base02a. it 
was found that there were no natural ammonia sources in the MRPO monthly inventory 
files. 

• Natural Area Sources: The Base02a area-source inventory files included natural sources, 
such as wildfires and wild animals. These records were extracted from the stationary-
area-source inventories. Note that the WRAP area-source files did not include any natural 
sources. 

• Natural Fires: Of the five fire categories modeled in Base02a (wildfires, wildland fire 
use, non-Federal rangeland prescribed fires, prescribed fires [which were split into natural 
and anthropogenic prescribed for this purpose of this sensitivity], and agricultural fires), 
only the categories that represent natural fires (wildfires, wildland fire use, and natural 
prescribed fires) were included.  

• Windblown Dust: We used the windblown dust inventory that ENVIRON and the RMC 
developed for use in case Base02a. Additional details on this dust inventory are available 
at http://www.cert.ucr.edu/aqm/308/wb_dust2002/wb_dust_ii_36k.shtml.  

The biogenic and windblown dust emissions from the Base02a SMOKE outputs that are stored at 
the RMC were used directly. For the fire (including both point and area fires), natural area, and 
ammonia emissions, these data were reprocessed specifically for scenario Base02nt using the 
same ancillary data (temporal, chemical, and spatial allocation data) used in case Base02a. QA 
plots and documentation for scenario Base02nt are posted on the RMC web site at 
http://pah.cert.ucr.edu/aqm/308/qa_Base02nt36.shtml.  

Modeling Results 

Figure 8 shows the model-reconstructed light extinction in the clean emissions model simulation. 
Because the natural fire emissions in the WRAP states were a major component of the clean 
emissions, the largest visibility impairment is in the regions with natural fire emissions. 
Contributions to light extinction from natural sources were small in regions without large fire 
emissions, as evidenced in the eastern U.S., where the extinction was only slightly larger (about 2 
Mm-1) than perfectly clean Rayleigh conditions of 10 Mm-1. 

Although there are large uncertainties in the natural emissions, and it is known that there are 
missing types of natural emissions, the components of the natural inventory used in this 
sensitivity simulation did contribute to relatively large visibility impairment in regions where 
there were large wildfires. Extinction coefficients as large as 90 Mm-1 were simulated in the 
southern Oregon and northern California regions; this was most likely a result of the large Biscuit 
fire in Oregon, plus contributions from smaller fires and other natural emissions. These visibility 
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impairment levels exceed the natural visibility levels specified in the EPA regional haze natural 
visibility guidance document. It will thus be more difficult for the modeling to demonstrate 
attainment of progress goals in areas of the country subject to wildfires because of their large 
contribution to visibility impairment that is not controllable. In other regions of the country for 
which the inventories lacked large natural fire emissions, the modeled clean visibility was only 
slightly greater than clean Rayleigh conditions. Note the model results may be overly optimistic 
in these regions because we lack a complete, accurate natural emissions inventory. 

 

Figure 8. Annual average model-reconstructed “clean conditions” visibility 
as extinction coefficient. 

These results are all very tentative because of the large uncertainties in natural emissions. 
Considerable effort would be needed to more fully investigate natural conditions in future 
modeling studies. It will always be difficult to determine and quantify “clean conditions” based 
on observations because of the pervasive influence of anthropogenic emissions. 

Also as part of this sensitivity analysis, the contributors to organic carbon aerosols (OC) for the 
clean conditions scenario wer4e evaluated. The CMAQ model represents explicitly three classes 
of organic carbon aerosols: 

• AORGPA: Primary anthropogenic OC resulting from direct organic mass emissions, such 
as primary organic aerosol (POA). 

• AORGA: Secondary anthropogenic OC resulting from aromatic VOCs, such as xylene, 
toluene, and cresols. 
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• AORGB: Secondary biogenic OC resulting from biogenic VOCs, such as terpenes.  

Because it was not cost effective to carry out CAMx/PSAT simulations with OC, the explicit OC 
results for the clean conditions case were analyzed, and then compared those results to the 
Base02b case in an attempt to infer the relative contributions of biogenic and anthropogenic 
VOCs to OC. These results are difficult to interpret for at least two reasons: 

• Because of the simplified approach used by CMAQ and the Carbon Bond Mechanism 
version 4 (CB4) to represent these species, it is not possible to accurately classify all 
emissions into the CMAQ model as either biogenic or anthropogenic based simply on the 
species name. Thus, some biogenic OC might be included with AORGA, and some 
anthropogenic OC might be included in AORB.  

• Some fire emissions are classified as anthropogenic, but these emissions might include 
species such as terpenes that are typically considered biogenic. Using the analysis 
approach in which all terpenes are assumed biogenic then incorrectly causes some 
anthropogenic emissions to be labeled biogenic when we use the simplified approach of 
analyzing OC in terms of AORGPA, AORGA and AORGB.  

In spite of these difficulties, however, the results should classify the majority of the emissions 
correctly as either biogenic or anthropogenic. 

For each of the above three components of OC, plots of the annual average mass in the Base02b 
case were prepared, and then the controllable mass was estimated as the difference between the 
Base02b case the Base02nt clean emissions scenario. Figure 9 shows the annual average mass of 
OC contributed from AORGPA in case Base02b (top) and the portion of that mass attributed to 
controllable emissions (bottom). Comparing these two plots indicates that in the western U.S. 
there is considerable AORGPA mass that is not controllable. It is likely that much of this mass is 
from fires, since uncontrollable AORGPA mass is present at the site of large fires in southern 
Oregon and north of Tucson, AZ. 

Figure 10 shows the annual average mass of secondary OC contributed from AORGA in the 
Base02b case (top) and the portion of that mass attributed to controllable emissions (bottom). 
These plots indicate that virtually all of the AORGA mass is controllable, since the bottom plot is 
almost identical to the top plot. 

Figure 11 shows the annual average mass of OC contributed from AORGPA in the Base02b case 
(top) and the portion of that mass attributed to controllable emissions (bottom). These plots 
indicate that although most of the AORGB mass is not controllable, a significant amount of mass 
is controllable. It is likely that the controllable AORGB mass results from VOC oxidation 
chemistry and the larger amount of biogenic mass that is oxidized and subsequently condenses to 
form OC in the Base02b case. These results indicate that controlling O3 precursor emissions is 
effective at reducing a small but significant fraction of the biogenic OC. 
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Figure 9. Annual average modeled primary anthropogenic OC (AORGPA) in Base02b 
(top) and the portion that is “controllable” primar y anthropogenic OC (bottom). 
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Figure 10. Annual average modeled secondary anthropogenic OC (AORGA) in Base02b 
(top) and the portion that is “controllable” secondary anthropogenic OC (bottom). 
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Figure 11. Annual average modeled primary biogenic OC (AORGB) in Base02b (top) 
and the portion that is “controllable” primary biog enic OC (bottom). 
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It might be difficult for the WRAP states and tribes to use these results quantitatively in develop-
ing emissions control strategies for visibility SIPs and TIPs. However, the results do provide 
some insight into the relative contributions of biogenic and anthropogenic OC as well as the 
amount of each that is controllable in the model simulations. 

Finally, it is noted that there are uncertainties in the modeled emissions of anthropogenic VOCs, 
and larger uncertainties in the modeled emissions of biogenic VOCs. It is not possible to evaluate 
the model performance individually for biogenic and anthropogenic OC because the OC 
measurements do not distinguish between those two forms. Instead, only comparisons of total 
modeled OC to total measured OC can be made. Therefore, even when the model achieves good 
performance for total OC, it is possible that the model may be overpredicting one component of 
total OC and underpredicting the other. The inability to evaluate model performance for each 
component of OC increases the uncertainty of the results described here and illustrated in Figures 
9 through 11, so caution should be used when drawing conclusions about the sources of OC 
based on these results. 
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